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Introduction (¢

Introduction - |

(*) Ultradifferentiable functions: Sub-classes of smooth functions
such that the growth of f(P), p € N, is controlled/measured in
terms of a weight.

(x) "Classically” two approaches:
(/) weight sequence M = (M,)pen (e.g. S. Mandelbrojt; H.
Cartan; H. Komatsu; L. Hérmander) or a
(i) weight function w : [0, +00) — [0, +00) (e.g. A. Beurling;
G. Bjorck; D. Vogt; H.-J. Petzsche; R. Braun, R. Meise, B. A.
Taylor).

() The weight sequence case has been introduced first.

(x) In general both settings are mutually distinct (see
Bonet/Meise/Melikhov '07; Rainer/S. '14).
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Introduction

Introduction - |l

() Growth and regularity assumptions on M and w are required.

() Conditions on weights imply, or even characterize, (desired)
properties for the corresponding function classes.

(*) From now on we focus on the weight sequence case.

() Analogous definitions/results/constructions are expected for w,
too. - Open problem!!
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Introduction

Introduction - Il

(*) (One-dimensional case) Let U C R be open. For each compact
K CC U, the set

{f(p)(x) . peN XGK}

hP M,

is required to be bounded.

(*) Roumieu-type Exppy: boundedness for some h > 0
Beurling-type £v): boundedness for all h > 0

(*) We can define such spaces for M € RY, arbitrary.

(*) Usually, M is assumed to be "increasing fast”.

Gerhard Schindl| University of Vienna

Ultradifferentiable classes of entire functions



Introduction

Introduction - IV

(*) What is fast? Set m, := %, then it is (often) standard to
assume

. 1/p
PRl > 0

for the Roumieu-case and

; 1/p _
p o) T = 00

for the Beurling-case.

(*) Crucial to ensure that the real-analytic functions (R.-type with
M, = p!) are contained in Eqppy resp. in Epyy.

(+) "Normally” Egppy resp. €y are supposed to be lying between
known /important function classes.
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Introduction

Introduction - V

() Note: In the literature the sequence m := (mp)pen is
sometimes denoted by M.

() But m and M must not be mixed!

() Our results (also) illustrate the difference/growth gap between
M and m.

Gerhard Schindl| University of Vienna

Ultradifferentiable classes of entire functions



Introduction

Our aim(s)

(+) Study Epy resp. €y when M is violating standard growth
requirements - "small sequences”.

() What are the differences between such small classes and
spaces defined in terms of standard sequences?

(*) For which applications can such "exotic classes” be useful?

() Can we transfer known results from the standard setting to
small spaces?

() Can one construct from a given standard sequence
"canonically” a small one (and vice versa)?
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Introduction

Our aim(s) - comments |

(*) Main motivation: connection between classical /fast growing
and exotic/small sequences.

(+) Dual sequences: Introduced in J. Jiménez-Garrido’s PhD-thesis
('18) for the study of certain growth indices for sequences. A
different story...

(*) Very few literature concerning small classes is available.

() To the best of our knowledge we have only found works by M.
Markin (approx. 2000)...
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Introduction

Our aim(s) - comments

(*¥) Markin has considered small Gevrey sequences:
G® := (p!®)pen - equivalently (pP*)pen - with 0 < s < 1.
Compare: "normally” one has s > 1.

(*) Given a Hilbert space H and a normal (unbounded) operator A
on H, then consider the evolution equation

y'(t) = Ay(t),

and ask: Is it possible to detect boundedness of A in terms of
regularity of all (weak) solutions y : [0, +00) — H?

() Markin has shown: If each weak solution y (notion weak w.r.t.
the adjoint A*) belongs to some small Gevrey class, then A is
bounded.
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(Small) sequence classes and weighted entire spaces

Weight sequences - |

Mp

(¥) Let M = (M,), € RY; and set m = (mp), with m,, := o

(*) M is called normalized, if 1 = My < M;.
(x) M is called log-convex, if

VpENsg: M) <My 1Mpiy.
() We introduce the set

LC:={MeRY;: Misnorm., l.c., lim (M,)Y/P = +o0}.

p——+00
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(Small) sequence classes and weighted entire spaces

Weight sequences - |

() Given M = (Mp)pen and N = (N,)pen we write M < N if
M, < N, for all pe N and M < N if

(Mp) 1/p
sup | — < 4o00.
PEN>o NP

(*) M and N are called equivalent, if M < N and N < M.

() Above one can replace M and N simultaneously by m and n.
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(Small) sequence classes and weighted entire spaces

Ultradifferentiable classes - |

(¥) Let & denote the class of smooth functions. Let M € RY,
U C RY be non-empty open.

(+) Define the (local) classes of Roumieu-type by

EmWU) ={fe&U): VKCCUIh>0: [[fmkn<-+oo},
(*) and the Beurling-type by

EmU) ={fe&U): VKCCUYh>0: |fllmkn<-+oc},
(*) where we set

) (x)|
f = .
H HM,K,h sup K hlal M|a|
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(Small) sequence classes and weighted entire spaces

Ultradifferentiable classes - Il

(*) We write &y if we mean either Eqppy or Epy.

(%) We omit writing the open set U if we do not want to specify
the set where the functions are defined.

(*) Analogously one can define classes with values in Hilbert or
even Banach spaces H (for simplicity here we assume U C R):

1P ()|
fllmkp= sup ——",
1fllm.k, b M,

i.e. the absolute value of £(P)(x) is replaced by the norm || - ||

x) We write E(U, H) for this vector-valued classes and omit H
(M]
if functions are scalar-valued.
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(Small) sequence classes and weighted entire spaces

Ultradifferentiable classes - IlI

(+) Similarly for holomorphic/entire functions - write H(C, H).

(¥) Let U C R be open and connected. Then & 1y(U, H) can be
identified with H(C, H). The isomorphism = (as Fréchet
spaces) is given by

S~ F900) i

E:Eey(U,H) = H(C,H), frrE(f):=) — 2
k=0

where xp is any fixed point in U.

() The inverse is given by restriction to U.
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(Small) sequence classes and weighted entire spaces

Small sequences

Lemma

Let M € RY be given.
(i) Iflimpoyyoo(mp)t/P =0, then Eqpn C E1y(= H(CT)) with

continuous inclusion.

(i) Let M be log-convex and normalized. Assume that
Emy(R) C &6y (R)(= H(C)),

holds (as sets), then lim,_, oo (m,)Y/P = 0 follows.
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(Small) sequence classes and weighted entire spaces

Conjugate sequence - |

(x) Let M € RY - define the conjugate sequence M* = (M) pen
by

1
M= = , peN,
m
ie. M* .= mL

(*) There is a one-to-one correspondence between M and M* and
M** = M holds.

() (Known) growth properties for M can be expressed in terms of
M* - and vice versa...

Gerhard Schindl| University of Vienna

Ultradifferentiable classes of entire functions



(Small) sequence classes and weighted entire spaces

Conjugate sequence - |l

(*) M < N if and only if N* < M* and so M ~ N if and only if
M* ~ N*.

(%) limps oo (M3)Y/P = +oc if and only if lim,_ oo (m,)/P = 0.

(%) M* is log-convex if and only if m is log-concave
(non-standard!), i.e.

2
VpeNsp: mj > mp_1Mpy1.
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(Small) sequence classes and weighted entire spaces

Conjugate sequence - |lI

Let M € R§0 be given with 1 = My > My and let M* be the
conjugate sequence.

(a) M* € LC if and only if m is log-concave and
lim s+ 00 (mp) /P = 0.
(b) M* € LC implies Egpy € E gy with strict inclusion.
(c) If in addition M is log-convex with 1 = My = My, then
Emy(R) C E61)(R) gives limp_, oo(M)L/P = +o00.
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(Small) sequence classes and weighted entire spaces Markin's

Conjugate sequence - |V

Lemma

Let M € RY be given. Then the following are equivalent:
(i) We have M < M*.

(i) We have M < G1/2.

(iii) We have G/% < M*.

Analogously, if M* < M resp. if < is replaced by <. Thus:
() M~ M* if and only if M =~ G'/? and

() M = M* if and only if M = G'/2 = M*.

(¥) In particular, G1/2 = (G'/2)* holds true.
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(Small) sequence classes and weighted entire spaces

(Markin's) Example - small Gevrey sequences

Let M= G5 for0<s<1and G° € LC.

*

%) So m= G5! with —1 < s — 1 < 0 (negative Gevrey-index!).

)
)
) We have lim,_, «(mp)}/P =0 and m is log-concave.
*)

(
(
(
(

M* = G5 and so clearly M* € LC, too.
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(Small) sequence classes and weighted entire spaces

Weighted entire spaces - |

() Let v be the weight function: v : [0,4+00) — (0, +00) is radial
and v is

(=) continuous,
(—) non-increasing and
(—) rapidly decreasing, i.e. lim;_, o t“v(t) =0 for all kK > 0.
() We call v normalized, when v(t) =1 for all t € [0, 1]
(w.l.o.g.).
() Let H be a Hilbert space, we consider H-valued weighted
spaces of entire functions:

Hy(C H) = {f € H(C, H) - [|f]lv := sup IF()v(lz]) < +o0}

Gerhard Schindl| University of Vienna

Ultradifferentiable classes of entire functions



(Small) sequence classes and weighted entire spaces

Weighted entire spaces - |l

() Let ¥ = (Va)nen., be a non-increasing sequence of weights,
i.e. vy > vy for all n.
Define the (LB)-space

HF(C,H) = lim HZ(C, H).

n—o0

(%) 'V = (Va)nen., is a non-decreasing sequence of weights, i.e.
Vp < Vpp1 for all n, then define the Fréchet-space

HE(C,H) = lim HZ(C, H).

n—oo
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(Small) sequence classes and weighted entire spaces

Weighted entire spaces - |lI

() Let v be a weight function and ¢ > 0. Set
Ve 1t v(ct), ve it v(t)C.
Each v, and v€ is a weight.
() Consider the dilatation-type system
Ve i= (Ve)ceNsos Vo= (V%)CEN>0'

(*) Similarly, if v <1, the exponential-type system

= 1
V= (v)eesgs V= (V)cerso-
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(Small) sequence classes and weighted entire spaces

Weighted entire spaces - IV

(*) Let M € RY, be with My = 1, such that M is log-conv. and
limp—s 00 (Mp)Y/P = +o00.

() For such M consider the associated weight function
wp - R>g — R defined by

v
wpm(t) = sup log () for t #0, wpm(0) := 0.
jen A\ M

(*) Let ¢ >0, then set
vm(t) = exp(—wm(t)), t>0,

(1) = exp(—wm(ct)), vis(t) = exp(—cwm(t)).
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(Small) sequence classes and weighted entire spaces

Weighted entire spaces - V

(%) Introduce M, := (Vm,c)ceNso. M, = (V/\/l,%)ceN>o:

— 1
ME = (Vipeens, and M= (viy)cen,.

(%) We write M*.,... for the systems corresponding to M*.
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1 (Small) sequence classes and weighted entire spaces Markin's approach

Main result - Markin for M =2 G°, 0<s< 1

Theorem

Let M € RI§0 with My = 1 > My such that Iimp_>+oo(mp)1/p =0
and m is log-concave. Let | C R be an interval, then

00 R f(k)(Xo)
E:&m(l,H) = Hige (CH), f— E(f):= Z 0

k=0

(z—xo)k

is an isomorphism (of locally convex spaces) for any fixed xy € I.
Moreover, with the same definition for E, also

E: Eany (I, H) = H= (C, H)

is an isomorphism.
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(Small) sequence classes and weighted entire spaces

Comparison with Markin's statement

() Let 0 < a < 1 (fixed) and put v(t) := et /07

() Markin has shown that the following mappings are
isomorphisms (as l.c.v.s.):

E : Ergay (I, H) = HH(C, H),

and
E : Egay(l, H) = H2(C, H).

(*) This follows by our result applied to G%* 0 < a <1, by
(G*)* = G1~%, by computing the corresponding associated
function and finally comparing the dilatation- and
exponential-type growth systems - possible for Gevrey-weights!
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(Small) sequence classes and weighted entire spaces

An application - "bad” M = "nice” M*

Theorem

Let M, N € R§0 be given and assume that

() 1= My > My and1= Ny > Ny,

(%) limposoo(mp) /P = limps oo (np) /P = 0,
() both m and n are log-concave.

Then the following are equivalent:
(i) We have M < N.
(i) We have Eqpyy € Eqny with continuous inclusion.

(iii) We have Ey C Eny with continuous inclusion.

Proof: Combine the previous main Theorem and the recent
characterizations for inclusions for weighted entire spaces (S. '22)
applied to the conjugates.

Gerhard Schindl| University of Vienna

Ultradifferentiable classes of entire functions



Markin's approach

() Let H be a Hilbert and space and A a normal (unbounded)
operator H. Consider

y'(t) = Ay(t). (1)

(x) If Ais a bounded operator on H, then each solution y of (1) is
an entire function of exponential type.

() M. Markin: There exists an unbounded normal operator A
such that each (weak) solution of (1) is an entire function.

() Thus, in order to detect boundedness for A, more precise
regularity/growth restriction is required!
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Markin's approach

Intro - |l

We generalize a first result from Markin:

Theorem

Let M € RY be given and | C R a closed interval. Then a solution
y of (1) belongs to Ey(1, H) if and only if y(t) € Ep(A) for all
t € 1. In this case one has y("(t) = A"y(t) for all t € I.

Here the R.-case is
E{M}(A) ={feC®A): IC,h>0VneN ||A'f||y < Ch"M,},

with
C=(A):= (] D(A"),
neN
and D(A") is the domain of A", the n-fold iteration of A (densely
defined on H).
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Markin's approach

Intro - Il

Markin has shown the following:

Let 0 < 3 < 400. If (as sets)

U &ery(A) = Eny(A),
0<B'<B

then the operator A is bounded.
Goal: Generalize this to more arbitrary families of small sequences.

Lemma looks strange for "common classes”...

But "common= A =differential operator”...unbounded!
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s Markin's approach D

Our results - crucial lemma

Lemma

Let § C LC be a family of sequences such that

VNeFIMeF: wm(2t)=O(wn(t)) ast— +oo. (2)

Suppose there exists a = (a;) € RY with:
() lims s soo(a)) = 0,

(i) a is a uniform bound for §, i.e.

N.
VNeFdC>0V,jeN: _—Ijznngaj.
J!

If as sets Upeg Eqny (A) = E1)(A), then A is bounded.
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Markin's approach

Our results - technical construction |

Requirements for §7
Let §:= {N®) ¢ RY; : 8 > 0} such that
(1) NSB) =1forall 5 >0,

(i) N < N(B2) o n(B1) < pP2) for all 0 < B; < By (point-wise
order),

(iif) 1imj-s oo ()i = 0 for each § >0,

(iv) j— (nj(.’B))l/j is non-increasing for every 5 > 0,

NG\ 1 (82)\ 1/
l J l o for all
(V) |mj_>+oo W = |mj_>+oo “B1 = +OO or a

nt
0<pr <P

J J
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Markin's approach Jua

Our results - technical construction Il

Proposition

Let §:= {NW®) ¢ RY: 3> 0} have (i) — (v) from before.
Then there exists a = (a;); € RY; such that

() j = (a;)Y4 is non-increasing,
(*) (3))*¥ = 0 asj — +oo, and
1/j
(%) limj5400 (%) = o0 for all B > 0.
J

In addition, § satisfies (2).
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Markin's approach

Our results - comments on the proof

() The proof of the crucial lemma before requires another
technical preparation.

() One proceeds by contradiction.

(*) One uses an alternative description for £y} (A) involving the
associated function and the spectral measure associated with
A (due to Gorbachuk and Knyazyuk '89).
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Markin's approach

Main result - |

Theorem

Let a = (aj); such that a}/j — 0 and § as before. Assume that for
any weak solution y of (1) on [0,+00), there is N € § such that
ye g{N}([Oa —|—OO), H)

Then the operator A is bounded.

Combining this with the crucial representation involving the
conjugate sequence we obtain...
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s Markin's approach

Main result - 11

For § consider:

(31) N e LC for all Ne%and 1:N0:N1,

(§2) § has (2),

(§3) & is uniformly bounded by some a = (a;); with (aj)l/j — 0,
and

(F4) for all N € F we have that n is log-concave.

Theorem

Let § satisfy (§1) — (§a). Suppose that for every weak solution y
of (1) there exist N € § and C, k > 0 such that y can be extended
to an entire function with

Ily(2)||n < Cen(KlzD),

Then A is already a bounded operator.
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Dual sequences

H

Goal: Find a natural construction for "exotic/non-standard/small
sequences.

() Immediate: start with "nice/regular” R(= M*) and then
consider M := R*(= r1).

() Second idea: If R is standard and "nice enough”, then take
R-L.

() Third approach: Start with "nice enough” R and consider the
so-called dual sequence D.
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Dual sequences

Dual - Il

Let a = (ap), € RY,, then the upper Matuszewska index a(a) is
defined by

. ap . .
a(a) :=inf{la cR: p—g is almost decreasing}

=inflacR:IH>1V1<p<g: E<Hi},

q* —  p°
and the lower Matuszewska index B(a) by
p(a) :=sup{f eR: p — is almost increasing}
—sup{feR:IH>1V1<p<gq: %SHZZ}.
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Dual sequences

Dual - Il

These values give an alternative (more compact) possibility to
formulate the main results concerning weighted entire classes:

(x) Take M € RYj such that a(u) < 1. Here 1= (1), with
pp = Mp/Mp_1.

(¥) If M € RY, with (i) < 400, then multiply M with an
appropriate Gevrey-sequence.

() Let, e.g., M € RY, with 3(1) > 1 be given - then consider
ML,

(B(n) > 1 for M € LC precisely means that M is strong
non-quasianalytic.)

() For G* both indices coincide and are equal to s.
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Dual sequences

Dual - IV

(*) Let N € LC and consider the counting function
En(t) = [{p € Nog : vp = Np/Npy < 1}], £ 0.
() The dual sequence D is defined by
Vp>uri(=1): dpr1:=2n(p), dpy1:=1 —1<p<u,
and so set D, :=[]%_ d;.
(*) By definition D € £LC with 1 = Dy = D;.

() The sequence N, = p! is self-dual.
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Dual sequences

The main preparatory result (J. Jiménez-Garrido, '18) in this

context is:

Theorem
Let N € LC be given. Assume that

dB>1VpeN: v, < By, (3)

Then a(v) = % and f(v) = ﬁ.

(3) is strictly weaker than (M2)/moderate growth and strictly
stronger than (M2)’/derivation closedness.

Involving this information we are able to show...

University of Vienna
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(Small) sequence classes and weigh ntire spaces  Markin's approach  Dual sequences

Dual - VI

Theorem

Let N € LC be given and let D be the dual sequence. We assume
that:

(x) B(v) > 1 and

(*)

d1B>1VpeN: vy < By

Then there exists L € Rlio which is equivalent to D and such that
L satisfies all requirements in order to apply the characterization for
&y in terms of the weighted entire space given by L*.

If1 < B(v) < av) < +o0, then L satisties (except normalization)
the requirements from (1), (§2), and (Fa).
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