Ultradifferentiable classes of entire functions

Gerhard Schindl joint work with David N. Nenning; supported by Austrian Science Fund (FWF) project P33417-N

University of Vienna

Workshop on Global and Microlocal Analysis, Univ. di Bologna 28th-29th November, 2023

University of Vienna

Gerhard Schind

Introduction - 1

- (*) Ultradifferentiable functions: Sub-classes of smooth functions such that the growth of $f^{(p)}$, $p \in \mathbb{N}$, is controlled/measured in terms of a weight.
- (*) "Classically" two approaches:
 (i) weight sequence M = (M_p)_{p∈N} (e.g. S. Mandelbrojt; H. Cartan; H. Komatsu; L. Hörmander) or a
 (ii) weight function ω : [0, +∞) → [0, +∞) (e.g. A. Beurling; G. Björck; D. Vogt; H.-J. Petzsche; R. Braun, R. Meise, B. A. Taylor).
- (*) The weight sequence case has been introduced first.
- (*) In general both settings are mutually distinct (see Bonet/Meise/Melikhov '07; Rainer/S. '14).

Introduction - II

- (*) Growth and regularity assumptions on M and ω are required.
- (*) Conditions on weights imply, or even characterize, (desired) properties for the corresponding function classes.
- (*) From now on we focus on the weight sequence case.
- (*) Analogous definitions/results/constructions are expected for ω , too. Open problem!!

→ < ∃ →</p>

Introduction - III

(*) (One-dimensional case) Let $U\subseteq\mathbb{R}$ be open. For each compact $K\subset\subset U$, the set

$$\left\{\frac{f^{(p)}(x)}{h^p M_p} : p \in \mathbb{N}, x \in K\right\},\$$

is required to be bounded.

- (*) Roumieu-type $\mathcal{E}_{\{M\}}$: boundedness for some h > 0Beurling-type $\mathcal{E}_{\{M\}}$: boundedness for all h > 0
- (*) We can define such spaces for $M\in\mathbb{R}^{\mathbb{N}}_{>0}$ arbitrary.
- (*) Usually, *M* is assumed to be "increasing fast".

Introduction - IV

(*) What is fast? Set
$$m_p := \frac{M_p}{p!}$$
, then it is (often) standard to assume $\lim \inf (m_p)^{1/p} > 0$

$$\liminf_{p\to+\infty}(m_p)^{1/p}>0$$

for the Roumieu-case and

$$\lim_{p\to+\infty}(m_p)^{1/p}=+\infty$$

for the Beurling-case.

- (*) Crucial to ensure that the real-analytic functions (R.-type with $M_p = p!$) are contained in $\mathcal{E}_{\{M\}}$ resp. in $\mathcal{E}_{(M)}$.
- (*) "Normally" $\mathcal{E}_{\{M\}}$ resp. $\mathcal{E}_{(M)}$ are supposed to be lying between known/important function classes.

Introduction - V

- (*) Note: In the literature the sequence $m := (m_p)_{p \in \mathbb{N}}$ is sometimes denoted by M.
- (*) But *m* and *M* must not be mixed!
- (*) Our results (also) illustrate the difference/growth gap between *M* and *m*.

Our aim(s)

- (*) Study $\mathcal{E}_{\{M\}}$ resp. $\mathcal{E}_{(M)}$ when M is violating standard growth requirements "small sequences".
- (*) What are the differences between such small classes and spaces defined in terms of standard sequences?
- (*) For which applications can such "exotic classes" be useful?
- (*) Can we transfer known results from the standard setting to small spaces?
- (*) Can one construct from a given standard sequence "canonically" a small one (and vice versa)?

→ < ∃ →</p>

Our aim(s) - comments |

- (*) Main motivation: connection between classical/fast growing and exotic/small sequences.
- (*) Dual sequences: Introduced in J. Jiménez-Garrido's PhD-thesis ('18) for the study of certain growth indices for sequences. A different story...
- (*) Very few literature concerning small classes is available.
- (*) To the best of our knowledge we have only found works by M. Markin (approx. 2000)...

Our aim(s) - comments ||

- (*) Markin has considered small Gevrey sequences: $G^s := (p!^s)_{p \in \mathbb{N}}$ - equivalently $(p^{ps})_{p \in \mathbb{N}}$ - with $0 \le s < 1$. Compare: "normally" one has $s \ge 1$.
- (*) Given a Hilbert space H and a normal (unbounded) operator A on H, then consider the evolution equation

$$y'(t) = Ay(t),$$

and ask: Is it possible to detect boundedness of A in terms of regularity of all (weak) solutions $y : [0, +\infty) \rightarrow H$?

(*) Markin has shown: If each weak solution y (notion weak w.r.t. the adjoint A*) belongs to some small Gevrey class, then A is bounded.

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Weight sequences - |

$$(*)$$
 Let $M=(M_p)_p\in \mathbb{R}^{\mathbb{N}}_{>0}$ and set $m=(m_p)_p$ with $m_p:=rac{M_p}{p!}$.

(*) M is called normalized, if $1 = M_0 \le M_1$.

(*) *M* is called log-convex, if

$$\forall p \in \mathbb{N}_{>0}: M_p^2 \leq M_{p-1}M_{p+1}.$$

(*) We introduce the set

$$\mathcal{LC}:=\{M\in\mathbb{R}^{\mathbb{N}}_{>0}:\;M\; ext{is norm., l.c., }\lim_{p o+\infty}(M_p)^{1/p}=+\infty\}.$$

University of Vienna

Gerhard Schind

Weight sequences - 11

(*) Given
$$M = (M_p)_{p \in \mathbb{N}}$$
 and $N = (N_p)_{p \in \mathbb{N}}$ we write $M \leq N$ if $M_p \leq N_p$ for all $p \in \mathbb{N}$ and $M \preceq N$ if

$$\sup_{p\in\mathbb{N}_{>0}}\left(\frac{M_p}{N_p}\right)^{1/p}<+\infty.$$

(*) *M* and *N* are called equivalent, if $M \leq N$ and $N \leq M$.

(*) Above one can replace *M* and *N* simultaneously by *m* and *n*.

・ロト ・回ト ・ヨト

Ultradifferentiable classes - I

- (*) Let \mathcal{E} denote the class of smooth functions. Let $M \in \mathbb{R}^{\mathbb{N}}_{>0}$, $U \subseteq \mathbb{R}^{d}$ be non-empty open.
- (*) Define the (local) classes of Roumieu-type by

 $\mathcal{E}_{\{M\}}(U) := \{ f \in \mathcal{E}(U) : \ \forall \ K \subset \subset U \ \exists \ h > 0 : \ \|f\|_{M,K,h} < +\infty \},$

(*) and the Beurling-type by

 $\mathcal{E}_{(M)}(U) := \{ f \in \mathcal{E}(U) : \forall K \subset \subset U \forall h > 0 : \|f\|_{M,K,h} < +\infty \},$

(*) where we set

$$\|f\|_{M,K,h} := \sup_{\alpha \in \mathbb{N}^d, x \in K} \frac{|f^{(\alpha)}(x)|}{h^{|\alpha|}M_{|\alpha|}}.$$

(日) (四) (日) (日) (日)

University of Vienna

Gerhard Schindl

Ultradifferentiable classes - II

- (*) We write $\mathcal{E}_{[M]}$ if we mean either $\mathcal{E}_{\{M\}}$ or $\mathcal{E}_{(M)}$.
- (*) We omit writing the open set U if we do not want to specify the set where the functions are defined.
- (*) Analogously one can define classes with values in Hilbert or even Banach spaces H (for simplicity here we assume U ⊆ ℝ):

$$||f||_{M,K,h} := \sup_{p \in \mathbb{N}, x \in K} \frac{||f^{(p)}(x)||_{H}}{h^{p} M_{p}},$$

i.e. the absolute value of $f^{(p)}(x)$ is replaced by the norm $\|\cdot\|_{H^{1}}$.

(*) We write $\mathcal{E}_{[M]}(U, H)$ for this vector-valued classes and omit H if functions are scalar-valued.

イロン 不通 とうせい

Ultradifferentiable classes - III

- (*) Similarly for holomorphic/entire functions write $\mathcal{H}(\mathbb{C}, H)$.
- (*) Let $U \subseteq \mathbb{R}$ be open and connected. Then $\mathcal{E}_{(G^1)}(U, H)$ can be identified with $\mathcal{H}(\mathbb{C}, H)$. The isomorphism \cong (as Fréchet spaces) is given by

$$E: \mathcal{E}_{(G^1)}(U,H) \to \mathcal{H}(\mathbb{C},H), \quad f \mapsto E(f):=\sum_{k=0}^{+\infty} \frac{f^{(k)}(x_0)}{k!} z^k,$$

University of Vienna

where x_0 is any fixed point in U.

(*) The inverse is given by restriction to U.

Gerhard Schind

Small sequences

Lemma

Let $M \in \mathbb{R}^{\mathbb{N}}_{>0}$ be given.

(i) If $\lim_{p\to+\infty} (m_p)^{1/p} = 0$, then $\mathcal{E}_{\{M\}} \subseteq \mathcal{E}_{(G^1)} (\cong \mathcal{H}(\mathbb{C}))$ with continuous inclusion.

(ii) Let M be log-convex and normalized. Assume that

$$\mathcal{E}_{\{M\}}(\mathbb{R}) \subseteq \mathcal{E}_{(G^1)}(\mathbb{R}) (\cong \mathcal{H}(\mathbb{C})),$$

• • • • • • • • • • • •

University of Vienna

holds (as sets), then $\lim_{p\to+\infty} (m_p)^{1/p} = 0$ follows.

Gerhard Schind

Conjugate sequence - |

(*) Let $M \in \mathbb{R}^{\mathbb{N}}_{>0}$ - define the conjugate sequence $M^* = (M_p^*)_{p \in \mathbb{N}}$ by

$$M_p^* := rac{p!}{M_p} = rac{1}{m_p}, \quad p \in \mathbb{N},$$

i.e. $M^* := m^{-1}$.

- (*) There is a one-to-one correspondence between M and M* and M** = M holds.
- (*) (Known) growth properties for *M* can be expressed in terms of *M** - and vice versa...

University of Vienna

Gerhard Schind

Conjugate sequence - ||

(*) $M \leq N$ if and only if $N^* \leq M^*$ and so $M \approx N$ if and only if $M^* \approx N^*$.

(*)
$$\lim_{p\to+\infty} (M_p^*)^{1/p} = +\infty$$
 if and only if $\lim_{p\to+\infty} (m_p)^{1/p} = 0$.

(*) *M*^{*} is log-convex if and only if *m* is log-concave (non-standard!), i.e.

$$\forall \ p \in \mathbb{N}_{>0}: \quad m_p^2 \geq m_{p-1}m_{p+1}.$$

< 口 > < 同

▶ < ≣ >

University of Vienna

Gerhard Schind

Conjugate sequence - III

Lemma

Let $M \in \mathbb{R}_{>0}^{\mathbb{N}}$ be given with $1 = M_0 \ge M_1$ and let M^* be the conjugate sequence.

- (a) $M^* \in \mathcal{LC}$ if and only if m is log-concave and $\lim_{p \to +\infty} (m_p)^{1/p} = 0.$
- (b) $M^* \in \mathcal{LC}$ implies $\mathcal{E}_{\{M\}} \subseteq \mathcal{E}_{(G^1)}$ with strict inclusion.
- (c) If in addition M is log-convex with $1 = M_0 = M_1$, then $\mathcal{E}_{\{M\}}(\mathbb{R}) \subseteq \mathcal{E}_{(G^1)}(\mathbb{R})$ gives $\lim_{p \to +\infty} (M_p^*)^{1/p} = +\infty$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Vienna

Gerhard Schind

Conjugate sequence - IV

Lemma

Let $M \in \mathbb{R}^{\mathbb{N}}_{>0}$ be given. Then the following are equivalent: (i) We have $M \preceq M^*$. (ii) We have $M \preceq G^{1/2}$. (iii) We have $G^{1/2} \preceq M^*$. Analogously, if $M^* \preceq M$ resp. if \preceq is replaced by \leq . Thus: (*) $M \approx M^*$ if and only if $M \approx G^{1/2}$ and (*) $M = M^*$ if and only if $M = G^{1/2} = M^*$. (*) In particular, $G^{1/2} = (G^{1/2})^*$ holds true.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Vienna

Gerhard Schind

(Markin's) Example - small Gevrey sequences

(*) Let
$$M \equiv G^s$$
 for $0 \le s < 1$ and $G^s \in \mathcal{LC}$.
(*) So $m \equiv G^{s-1}$ with $-1 \le s - 1 < 0$ (negative Gevrey-index!).
(*) We have $\lim_{p \to +\infty} (m_p)^{1/p} = 0$ and m is log-concave.
(*) $M^* \equiv G^{1-s}$ and so clearly $M^* \in \mathcal{LC}$, too.

*ロト *部ト *注

University of Vienna

Gerhard Schind

Weighted entire spaces - I

- (*) Let v be the weight function: $v : [0, +\infty) \to (0, +\infty)$ is radial and v is
 - (-) continuous,
 - (-) non-increasing and
 - (-) rapidly decreasing, i.e. $\lim_{t\to+\infty} t^k v(t) = 0$ for all $k \ge 0$.
- (*) We call v normalized, when v(t) = 1 for all $t \in [0, 1]$ (w.l.o.g.).
- (*) Let *H* be a Hilbert space, we consider *H*-valued weighted spaces of entire functions:

$$\mathcal{H}^{\infty}_{\nu}(\mathbb{C},H) := \{f \in \mathcal{H}(\mathbb{C},H) : \|f\|_{\nu} := \sup_{z \in \mathbb{C}} \|f(z)\|_{H}\nu(|z|) < +\infty\}.$$

Gerhard Schind

Ultradifferentiable classes of entire functions

Weighted entire spaces - 11

(*) Let <u>V</u> = (v_n)_{n∈N>0} be a non-increasing sequence of weights,
 i.e. v_n ≥ v_{n+1} for all n.
 Define the (LB)-space

$$\mathcal{H}^{\infty}_{\underline{\mathcal{V}}}(\mathbb{C},H) := \lim_{n \to \infty} \mathcal{H}^{\infty}_{\nu_n}(\mathbb{C},H).$$

(*) If $\overline{\mathcal{V}} = (v_n)_{n \in \mathbb{N}_{>0}}$ is a non-decreasing sequence of weights, i.e. $v_n \leq v_{n+1}$ for all *n*, then define the Fréchet-space

$$\mathcal{H}^{\infty}_{\overline{\mathcal{V}}}(\mathbb{C},H) := \varprojlim_{n \to \infty} \mathcal{H}^{\infty}_{\nu_n}(\mathbb{C},H).$$

メロト メロト メヨト メ

University of Vienna

Gerhard Schind

Weighted entire spaces - III

(*) Let v be a weight function and c > 0. Set

$$v_c: t \mapsto v(ct), \qquad v^c: t \mapsto v(t)^c.$$

Each v_c and v^c is a weight.

(*) Consider the dilatation-type system

$$\underline{\mathcal{V}}_{\mathfrak{c}} := (v_c)_{c \in \mathbb{N}_{>0}}, \qquad \overline{\mathcal{V}}_{\mathfrak{c}} := (v_{\frac{1}{c}})_{c \in \mathbb{N}_{>0}}.$$

(*) Similarly, if $v \leq 1$, the exponential-type system

$$\underline{\mathcal{V}}^{\mathfrak{c}}:=(v^{c})_{c\in\mathbb{N}_{>0}},\qquad\overline{\mathcal{V}}^{\mathfrak{c}}:=(v^{rac{1}{c}})_{c\in\mathbb{N}_{>0}}.$$

< 口 > < 同

▶ < ∃ >

University of Vienna

Gerhard Schind

Weighted entire spaces - IV

(*) Let
$$M \in \mathbb{R}_{>0}^{\mathbb{N}}$$
 be with $M_0 = 1$, such that M is log-conv. and $\lim_{\rho \to +\infty} (M_{\rho})^{1/\rho} = +\infty$.

(*) For such M consider the associated weight function $\omega_M : \mathbb{R}_{\geq 0} \to \mathbb{R}$ defined by

$$\omega_M(t) := \sup_{j \in \mathbb{N}} \log\left(rac{t^j}{M_j}
ight) \quad ext{for } t
eq 0, \qquad \omega_M(0) := 0.$$

(*) Let c > 0, then set

$$egin{aligned} &v_{\mathcal{M}}(t):=\exp(-\omega_{\mathcal{M}}(t)),\quad t\geq 0, \ &v_{\mathcal{M},c}(t):=\exp(-\omega_{\mathcal{M}}(ct)),\ v_{\mathcal{M}}^{c}(t):=\exp(-c\omega_{\mathcal{M}}(t)). \end{aligned}$$

Weighted entire spaces - V

(*) Introduce
$$\underline{\mathcal{M}}_{\mathfrak{c}} := (v_{\mathcal{M},c})_{c \in \mathbb{N}_{>0}}, \ \overline{\mathcal{M}}_{\mathfrak{c}} := (v_{\mathcal{M},\frac{1}{c}})_{c \in \mathbb{N}_{>0}},$$

$$\underline{\mathcal{M}}^{\mathfrak{c}} := (v_{\mathcal{M}}^{c})_{c \in \mathbb{N}_{>0}} \text{ and } \overline{\mathcal{M}}^{\mathfrak{c}} := (v_{\mathcal{M}}^{\frac{1}{c}})_{c \in \mathbb{N}_{>0}}.$$

(*) We write $\underline{\mathcal{M}}^*_{\mathfrak{c}},\ldots$ for the systems corresponding to M^* .

・ロト ・回ト ・ヨト

University of Vienna

Gerhard Schindl Ultradifferentiable classes of entire functions

Main result - Markin for $M \cong G^s$, $0 \le s < 1$

Theorem

Let $M \in \mathbb{R}_{>0}^{\mathbb{N}}$ with $M_0 = 1 \ge M_1$ such that $\lim_{p \to +\infty} (m_p)^{1/p} = 0$ and m is log-concave. Let $I \subseteq \mathbb{R}$ be an interval, then

$$E: \mathcal{E}_{\{M\}}(I,H) \to \mathcal{H}^{\infty}_{\underline{\mathcal{M}}^*_{c}}(\mathbb{C},H), \quad f \mapsto E(f):=\sum_{k=0}^{+\infty} \frac{f^{(k)}(x_0)}{k!}(z-x_0)^k$$

is an isomorphism (of locally convex spaces) for any fixed $x_0 \in I$. Moreover, with the same definition for E, also

$$E: \mathcal{E}_{(M)}(I,H) \to \mathcal{H}^{\infty}_{\overline{\mathcal{M}^*}_{\mathfrak{c}}}(\mathbb{C},H)$$

→ ∢ ≞ →

University of Vienna

is an isomorphism.

Gerhard Schind

Comparison with Markin's statement

$$(st)$$
 Let $0\leq lpha < 1$ (fixed) and put $u(t):=e^{-t^{1/(1-lpha)}}$

(*) Markin has shown that the following mappings are isomorphisms (as l.c.v.s.):

$$E: \mathcal{E}_{\{G^{\alpha}\}}(I, H) \to \mathcal{H}^{\infty}_{\underline{\mathcal{V}}^{c}}(\mathbb{C}, H),$$

and

$$E: \mathcal{E}_{(G^{\alpha})}(I, H) \to \mathcal{H}^{\infty}_{\overline{\mathcal{V}}^{c}}(\mathbb{C}, H).$$

(*) This follows by our result applied to G^{α} , $0 \le \alpha < 1$, by $(G^{\alpha})^* = G^{1-\alpha}$, by computing the corresponding associated function and finally comparing the dilatation- and exponential-type growth systems - possible for Gevrey-weights!

An application - "bad" M = "nice" M^*

Theorem

Let $M, N \in \mathbb{R}_{>0}^{\mathbb{N}}$ be given and assume that (*) $1 = M_0 \ge M_1$ and $1 = N_0 \ge N_1$, (*) $\lim_{p \to +\infty} (m_p)^{1/p} = \lim_{p \to +\infty} (n_p)^{1/p} = 0$, (*) both m and n are log-concave. Then the following are equivalent: (i) We have $M \preceq N$. (ii) We have $\mathcal{E}_{\{M\}} \subseteq \mathcal{E}_{\{N\}}$ with continuous inclusion. (iii) We have $\mathcal{E}_{\{M\}} \subseteq \mathcal{E}_{\{N\}}$ with continuous inclusion.

Proof: Combine the previous main Theorem and the recent characterizations for inclusions for weighted entire spaces (S. '22) applied to the conjugates.

University of Vienna

Gerhard Schind

Intro - I

(*) Let *H* be a Hilbert and space and *A* a normal (unbounded) operator *H*. Consider

$$y'(t) = Ay(t). \tag{1}$$

- (*) If A is a bounded operator on H, then each solution y of (1) is an entire function of exponential type.
- (*) M. Markin: There exists an unbounded normal operator A such that each (weak) solution of (1) is an entire function.
- (*) Thus, in order to detect boundedness for *A*, more precise regularity/growth restriction is required!

Intro - II

We generalize a first result from Markin:

Theorem

Let $M \in \mathbb{R}^{\mathbb{N}}_{>0}$ be given and $I \subseteq \mathbb{R}$ a closed interval. Then a solution y of (1) belongs to $\mathcal{E}_{[M]}(I, H)$ if and only if $y(t) \in \mathcal{E}_{[M]}(A)$ for all $t \in I$. In this case one has $y^{(n)}(t) = A^n y(t)$ for all $t \in I$.

Here the R.-case is

$$\mathcal{E}_{\{M\}}(A) := \{ f \in C^{\infty}(A) : \exists C, h > 0 \forall n \in \mathbb{N} ||A^n f||_H \le Ch^n M_n \},$$

with

$$C^{\infty}(A) := \bigcap_{n \in \mathbb{N}} D(A^n),$$

and $D(A^n)$ is the domain of A^n , the *n*-fold iteration of A (densely defined on H).

University of Vienna

Gerhard Schind

Intro - III

Markin has shown the following:

Let $0 < \beta < +\infty$. If (as sets) $\bigcup_{0 < \beta' < \beta} \mathcal{E}_{\{G^{\beta'}\}}(A) = \mathcal{E}_{(G^{\beta})}(A),$

then the operator A is bounded.

Goal: Generalize this to more arbitrary families of small sequences.

Lemma looks strange for "common classes"...

But "common = A = differential operator"...unbounded!

Image: A math a math

Our results - crucial lemma

Lemma

Let $\mathfrak{F} \subseteq \mathcal{LC}$ be a family of sequences such that

$$orall \ N \in \mathfrak{F} \ \exists \ M \in \mathfrak{F}: \quad \omega_M(2t) = O(\omega_N(t)) \ \text{as} \ t o +\infty.$$
 (2)

Suppose there exists
$$\mathbf{a} = (a_j) \in \mathbb{R}_{>0}^{\mathbb{N}}$$
 with:
(i) $\lim_{j \to +\infty} (a_j)^{1/j} = 0$,
(ii) \mathbf{a} is a uniform bound for \mathfrak{F} , i.e.

$$\forall N \in \mathfrak{F} \exists C > 0 \forall j \in \mathbb{N} : \quad \frac{N_j}{j!} = n_j \leq Ca_j.$$

•

・ロト ・日本・ ・ ヨト

University of Vienna

If as sets $\bigcup_{N \in \mathfrak{F}} \mathcal{E}_{\{N\}}(A) = \mathcal{E}_{(G^1)}(A)$, then A is bounded.

Gerhard Schind

Our results - technical construction |

Requirements for
$$\mathfrak{F}$$
?
Let $\mathfrak{F} := \{ N^{(\beta)} \in \mathbb{R}_{>0}^{\mathbb{N}} : \beta > 0 \}$ such that
(i) $N_0^{(\beta)} = 1$ for all $\beta > 0$,
(ii) $N^{(\beta_1)} \le N^{(\beta_2)} \Leftrightarrow n^{(\beta_1)} \le n^{(\beta_2)}$ for all $0 < \beta_1 \le \beta_2$ (point-wise order),
(iii) $\lim_{j \to +\infty} (n_j^{(\beta)})^{1/j} = 0$ for each $\beta > 0$,
(iv) $j \mapsto (n_j^{(\beta)})^{1/j}$ is non-increasing for every $\beta > 0$,
(v) $\lim_{j \to +\infty} \left(\frac{N_j^{(\beta_2)}}{N_j^{(\beta_1)}} \right)^{1/j} = \lim_{j \to +\infty} \left(\frac{n_j^{(\beta_2)}}{n_j^{(\beta_1)}} \right)^{1/j} = +\infty$ for all $0 < \beta_1 < \beta_2$.

• • • • • • • • •

University of Vienna

Gerhard Schind

Our results - technical construction II

Proposition

Let
$$\mathfrak{F} := \{N^{(\beta)} \in \mathbb{R}_{>0}^{\mathbb{N}} : \beta > 0\}$$
 have $(i) - (v)$ from before.
Then there exists $\mathbf{a} = (a_j)_j \in \mathbb{R}_{>0}^{\mathbb{N}}$ such that
(*) $j \mapsto (a_j)^{1/j}$ is non-increasing,
(*) $(a_j)^{1/j} \to 0$ as $j \to +\infty$, and
(*) $\lim_{j \to +\infty} \left(\frac{a_j}{n_j^{(\beta)}}\right)^{1/j} = +\infty$ for all $\beta > 0$.
In addition, \mathfrak{F} satisfies (2).

< ロ > < 回 > < 回 >

University of Vienna

Gerhard Schind

Our results - comments on the proof

- (*) The proof of the crucial lemma before requires another technical preparation.
- (*) One proceeds by contradiction.
- (*) One uses an alternative description for $\mathcal{E}_{\{M\}}(A)$ involving the associated function and the spectral measure associated with A (due to Gorbachuk and Knyazyuk '89).

▶ < ∃ >

University of Vienna

Main result - I

Theorem

Let $\mathbf{a} = (a_j)_j$ such that $a_j^{1/j} \to 0$ and \mathfrak{F} as before. Assume that for any weak solution y of (1) on $[0, +\infty)$, there is $N \in \mathfrak{F}$ such that $y \in \mathcal{E}_{\{N\}}([0, +\infty), H)$.

Then the operator A is bounded.

Combining this with the crucial representation involving the conjugate sequence we obtain...

Main result - II

For \mathfrak{F} consider:

- (\mathfrak{F}_1) $N\in\mathcal{LC}$ for all $N\in\mathfrak{F}$ and $1=N_0=N_1$,
- (\mathfrak{F}_2) \mathfrak{F} has (2),
- (\mathfrak{F}_3) \mathfrak{F} is uniformly bounded by some $\mathbf{a}=(a_j)_j$ with $(a_j)^{1/j} o 0$, and
- (\mathfrak{F}_4) for all $N \in \mathfrak{F}$ we have that n is log-concave.

Theorem

Let \mathfrak{F} satisfy $(\mathfrak{F}_1) - (\mathfrak{F}_4)$. Suppose that for every weak solution y of (1) there exist $N \in \mathfrak{F}$ and C, k > 0 such that y can be extended to an entire function with

$$\|y(z)\|_{H} \leq C e^{\omega_{N^*}(k|z|)}$$

Then A is already a bounded operator.

Gerhard Schind

Dual - I

Goal: Find a natural construction for "exotic/non-standard/small" sequences.

- (*) Immediate: start with "nice/regular" $R(=M^*)$ and then consider $M := R^*(=r^{-1})$.
- (*) Second idea: If R is standard and "nice enough", then take R^{-1} .
- (*) Third approach: Start with "nice enough" R and consider the so-called dual sequence D.

University of Vienna

Dual - II

Let $\mathbf{a} = (a_p)_p \in \mathbb{R}_{>0}^{\mathbb{N}}$, then the *upper Matuszewska index* $\alpha(\mathbf{a})$ is defined by

$$\begin{split} \alpha(\mathbf{a}) &:= \inf \{ \alpha \in \mathbb{R} : \frac{a_p}{p^{\alpha}} \text{ is almost decreasing} \} \\ &= \inf \{ \alpha \in \mathbb{R} : \exists \ H \geq 1 \ \forall \ 1 \leq p \leq q : \quad \frac{a_q}{q^{\alpha}} \leq H \frac{a_p}{p^{\alpha}} \}. \end{split}$$

and the *lower Matuszewska index* $\beta(\mathbf{a})$ by

$$eta(\mathbf{a}) := \sup\{eta \in \mathbb{R}: rac{a_p}{p^eta} ext{ is almost increasing}\}\ = \sup\{eta \in \mathbb{R}: \exists \ H \ge 1 \ orall \ 1 \le p \le q: \quad rac{a_p}{p^eta} \le Hrac{a_q}{q^eta}\}.$$

メロト メロト メヨト メ

University of Vienna

Gerhard Schind

Dual - III

These values give an alternative (more compact) possibility to formulate the main results concerning weighted entire classes:

- (*) Take $M \in \mathbb{R}_{>0}^{\mathbb{N}}$ such that $\alpha(\mu) < 1$. Here $\mu = (\mu_p)_p$ with $\mu_p = M_p / M_{p-1}$.
- (*) If $M \in \mathbb{R}^{\mathbb{N}}_{>0}$ with $\alpha(\mu) < +\infty$, then multiply M with an appropriate Gevrey-sequence.
- (*) Let, e.g., $M \in \mathbb{R}^{\mathbb{N}}_{>0}$ with $eta(\mu) > 1$ be given then consider $M^{-1}.$

 $(\beta(\mu) > 1 \text{ for } M \in \mathcal{LC} \text{ precisely means that } M \text{ is strong non-quasianalytic.})$

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

University of Vienna

(*) For G^s both indices coincide and are equal to s.

Dual - IV

(*) Let $N \in \mathcal{LC}$ and consider the counting function

$$\Sigma_N(t) := |\{ p \in \mathbb{N}_{>0} :
u_p = N_p / N_{p-1} \le t \}|, \quad t \ge 0.$$

(*) The dual sequence D is defined by

$$\begin{array}{ll} \forall \ p \geq \nu_1(\geq 1): & \delta_{p+1} := \Sigma_N(p), & \delta_{p+1} := 1 & -1 \leq p < \nu_1, \\ \\ \text{and so set } D_p := \prod_{i=0}^p \delta_i. \\ (*) \text{ By definition } D \in \mathcal{LC} \text{ with } 1 = D_0 = D_1. \end{array}$$

A D F A A F F A

University of Vienna

(*) The sequence
$$N_p = p!$$
 is self-dual.

Gerhard Schindl

Dual - V

The main preparatory result (J. Jiménez-Garrido, '18) in this context is:

Theorem

Let $N \in \mathcal{LC}$ be given. Assume that

$$\exists B \ge 1 \forall p \in \mathbb{N} : \quad \nu_{p+1} \le B\nu_p. \tag{3}$$

<ロ> <同> <同> <同> < 同> < 同> <

University of Vienna

Then
$$\alpha(\nu) = \frac{1}{\beta(\delta)}$$
 and $\beta(\nu) = \frac{1}{\alpha(\delta)}$.

(3) is strictly weaker than (M2)/moderate growth and strictly stronger than (M2)'/derivation closedness.

Involving this information we are able to show...

Dual - VI

Theorem

Let $N \in \mathcal{LC}$ be given and let D be the dual sequence. We assume that:

(*)
$$\beta(\nu) > 1$$
 and
(*)
 $\exists B \ge 1 \ \forall p \in \mathbb{N}: \quad \nu_{p+1} \le B\nu_p.$

Then there exists $L \in \mathbb{R}_{>0}^{\mathbb{N}}$ which is equivalent to D and such that L satisfies all requirements in order to apply the characterization for $\mathcal{E}_{[L]}$ in terms of the weighted entire space given by L^* .

If $1 < \beta(\nu) \le \alpha(\nu) < +\infty$, then L satisfies (except normalization) the requirements from (\mathfrak{F}_1) , (\mathfrak{F}_2) , and (\mathfrak{F}_4) .

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

(*) D. N. Nenning and G. Schindl, Ultradifferentiable classes of entire functions, Adv. in Op. Theory 8, art. no. 67, 2023; doi: 10.1007/s43036-023-00294-6.

(*) M. V. Markin, On the strong smoothness of weak solutions of an abstract evolution equation III. Gevrey ultradifferentiability of order less than one, Applic. Analysis, 78 (1-2), 139–152, 2001; doi: 10.1080/00036810108840930.

- ∢ ⊒ >

University of Vienna

Gerhard Schindl Ultradifferentiable classes of entire functions